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Speciation in multidimensional evolutionary space
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Adaptive dynamics in two-dimensional phenotype space is investigated by computer simulation. The model
assumes Lotka-Voltera-type competition and a stochastic mutation process. The carrying capacity has a single
maximum in the origin of the strategy space and the competition coefficient decreases with strategy difference.
Evolutionary branching, an asexual analog of adaptive speciation, is observed with suitable parameters. The
branching at the singular point, which is a fixed point of the directional evolution, may occur into two or three,
but not more, directions. Further branchings may occur after the initial separation. The probability of three-
branching is studied as a function of several parameters. We conclude that the two-way branching is the
predominant mode of adaptive speciation.
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I. INTRODUCTION: ENVIRONMENTAL FEEDBACK space. Only two branches can appear in a single branching
AND ADAPTIVE SPECIATION event in this case. However, this space is multidimensional in

any real case. So, we have to ask: Does the multidimension-

Adaptive speciatiofil—13] is the most parsimonious con- ality affect the phenomenon of evolutionary branching in an
cept on the origin of a new species. It is a literal implemen-essential way?
tation of Darwin’s idea of descent via a series of small adap- As we will see, a meaningfudeterministicapproximation
tive modificationg 14]. The tricky thing to understand is how 1S valid in a proper limit away from some fixed points, re-
evolution uphill on the adaptive landscape can lead to a giferred to as “singular:” Mutations should be small and rare
versity of species, as opposed to being stopped (tcal) for this limit. Around the singular point, however, the evolu-
maximum of the fitness. tionary process remains inherensyochastic Since the in-

An inherent feature of the Darwinian process provides thderfacing between the stochastic and deterministic regimes is

answer. Evolution modifies the environment and, in turn, thedifficult to handle analytically, the branching process should
fitness function. Existence of this feedback is not an extrd€ studied numerically. An analytic argument says that, at
assumption to introduce for explaining the process of speciagh0stK+1 branches can appear in a single branching event
tion. Instead, it is a mathematical precondition of the veryat a singular point, wher is the number of dimensions of
existence of more than a single species. Without the feecthe evolutionary state space. This would allow high number
back, parameter fine tuning would be necessary to avoid thef species to appear in a single event of speciation when the
best species to out-compete the other ones. The generdpte-space dimensionality is high. However, the analytic ar-
theory of the combined dynamics of the evolving populationgument does not ensure tegistenceof more-than-two-way
and of the Changing environment was presented earlier fdpl’anChingS, and tells nothing about the relative rates of dif-
one-dimensional1D) evolutionary state spada5—17, see ferent types of branchings. These issues has remained to be
also Refs[18—21]. It was shown that evolution toward in- checked by numerical experimentation, which is the main
creasing fitness can converge easily into a minimum, insteagoal of the present paper. We are especially interested in the
of a maximum, of the fitness functiof22—25. Then, the behavior in the limit when the deterministic approximation is
emerging disruptive selection splits the population into twovalid.
Subpopu|ations and drives them to evolve away from each After SUmmariZing the available analytical inSightS in Sec.
other [16'1ﬂ The theory of “adaptive Speciation” hypoth_ Il, we introduce a SPECifiC model in Sec. lll, and present
esizes that the very same disruptive selection results in thé@sults of numerical simulations for 2D state space in Sec.
adaptive emergence of sexual isolation between the twdV. We argue for the model-independent validity of our find-

types. ings and discuss their biological consequences in Sec. V.
In some biological situations, emergence of new species
clusters into a brief period and form a so-called “adaptive Il. THEORETICAL BACKGROUND

radiation” [26,27]. This phenomenon is very characteristic

and in the middle of interest of speciation studies. Like spe-

ciation in general, adaptive radiation is also a matter of in- To describe the evolution-environment feedback loop

tense debates. In the context of adaptive speciation, the foproperly, one should derive the fitness function and the dy-

lowing question arises: Is it possible that a single event ohamics of evolution from the underlying population dynam-

evolutionary branching leads to more than two species? ics. This section summarizes some of the theoretical results
The answer is a definitmo for 1D evolutionary state of Refs.[15-17,28,29about this connection.

A. Environmental feedback
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We collect all the environmental variables involved in thewith the branching of lines of individual descent while the
feedback loop into the environmental interaction variable second one is concerned with the branching of evolutionary
[30,31. (For instance, concentrations of different resourcedines) According to this theory, the process is subcritical for
are possible elements of) The population dynamics of a r,,,<0, when the births cannot compensate for the deaths.
specific species with size(t) at timet can be written in the The clone of mutants dies out with probability 1 in this case.

form In the supercritical situation, when births prevail over deaths
(rmue>0), there is a positive chance for the long-term sur-
@ —r(x,)n (1) vival of the clone(This probability is proportional to,,, for
dt A smallr ,; by linearization)

We suppose that the mutant clone has already assumed
where the growth rate, or fitnessis the difference between deterministic growth when it starts to modify the environ-
the rate of giving birth and the rate of death of an individual.mentl. In other words, individuals remain independent and
The variablex, which will be referred to as “strategy,” rep- the branching-process theory remains applicable during the
resents the heritable properties of the species. At a fixegtochastic phase. Moreover, we suppose that each evolution-
value ofl, the functionx—r(x,1) represents the fitness land- ary step is small, so the mutant strategy is almost identical to
scape. the strategy of its ancestor. This assumption leads to the pic-

However, the assumption of constdntvould lead to the ture of continuous and deterministic dynamics of the evolu-
absurd consequence of unlimited exponential growth. In th&onary process.
real world, growing population deteriorates the environment
until the equilibrium environmentl,, characterized by C. Directional evolution

r(x,1,)=0, is reached(Only fixed-point attractors of the  The mutant strategy, which does not die out, invades the
population dynamics are conS|_derled A this paggémr thel  resident populations. Mutant invasion may result in ousting
number of coexisting strategies™,x?), . .. x!, the L of its ancestor. This is especially the case when the muta-
number of equilibrium conditions(x'",1)=0 should be sat-  tional step-size is small and the “selection gradient,” or “lo-
isfied. Generally, solvability of this set of equations implies ¢ fitness gradient”

the inequalityL<dimI. This bound is referred to as the

“principle of competitive exclusion” in ecology32-3§. ar(y,l)
Note, however, that dirhis often infinite. D(x)= ay )
y=X
B. Assumptions about modeling evolution is different form zerd29]. Consecutive steps of such evolu-

To study evolution via small steps, one should specify the’uonary replacements constitute a continuous evolution of the

. . ; rategy.
set 0 . _ .
Acc oI d[i)r? ;?/lblivzpescijepslsotgs S:;Zieg%jpiifétzaya icsongnuuﬁ% The random process of substitutions can be approximated

K-dimensional continuous variable. Value xis kept fixed Enyu;t?grgir?rlglrs;rce (2:1” damf; t(i)(:ne\s/?elugogr,epsr(r)nvfflile%itehflinggin
during the lifetime of an individual and inherited faithfully, and Law[28] established that the evollautionar d ﬁamics of a
except when mutation occurs. Only a finite number of differ- ydy

ent strategies are present at any given time. The list of th%Ingle strategy Is
strategies changes with mutations and extinctions. dx 1

We assume time-scale separation between population dy- — =~ unCD(X). (3
namics and evolution. Accordingly, whenever possible, we dt 2

suppose that a new mutant arrives in the equilibrium envi-

ronment set by the strategies that are already present. As tH&1€ MatrixC is the variance-covariance matrix of the differ-
mutant population is initially small, its appearance does nofNC€ Vector between the mutant's and its ancestor's strategy.
change the environment immediately. Consequently, the If the mutant strategy is dlstrlbute_d unlformly.m theneigh-
initial growth rate of the mutant of strategy is Iy bolr hc2’0d of strategy, the covariance matrix becomes
=r(y,1), wherel is the equilibrium environment set by the = 2€ 1. (1 is the unit matrix) This leads to the simplifica-
resident. That is, there is no environmental feedback operaf'®n
ing on the mutant population, so its initial growth would be
exponential in the deterministic approximation. However, %:

. . ynD(x), (4)
because of the smallness of the emerging population, sto- dt
chastic aspects are non-negligible.

Stochastic replication of independent individuals is analowhere y= ue2/4 contains the constant factors.

gous to the multiplication of neutrons in a nuclear chain
reaction and many other types of self-replication. Such pro- D. Singular strategies
cesses are described by the branching-process tti8adty . .
(Note that these “branching processes” have nothing to do A strategyx is referred to as a singular one,B{(x) =0,
with phenomenon of “evolutionary branching,” which is a that is, if directional evolution ceasesxatThis fixed point is
main issue of the present paper. The first one is concernestable under dynamidg) if and only if the Jacobian matrix
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aD(x)‘ azr(y,lg)‘ ar(x,l) al, The Tirst two terms of Eq(6)2are zero forl=15. Fgr the
= = - (5 coexistence of strategie$t, x(?, ... x(), all near tox, the
ox | _- P \ ) aly x| - 7oL €
x=x y=x X=X equilibrium conditions

K

is negative definit¢28,38. A singular strategy with this kind M) (2

of stability is referred to as a convergence stable one. )= “(IHIZI B 4= X
Note that a convergent stable singular strategy is not nec-

essarily a local maximum of the fithess function. Negative K

definitiveness of the first term of E€5) would correspond to +k|21 V(1) (X =X ) (V=)

a fitness maximum. The second term represents the change T

of the fithess gradient via the evolution-induced environmen- + (higher-order terms=0 7

tal change. It may result in a negative definite Jacobian even

if the first term is not negative definite; that is, it is possibleshould hold for eachi=1, ... L. In this context| denotes
that the directional evolution converges to a singular stratthe equilibrium environment set by the equilibrium of strat-
egy, which is not a local maximum of the fitness functionegiesx®,x?), ... x1). In the last term of Eq(7), we re-

[22-25. Local maxima of the fitness are referred to(lms ~ placed! by I; because the error caused by the replacement is

cally) evolutionary stable strategy, or E$39], because a in the third order. As the adjustable varialleenters the

mutant strategy that is similar to the resident is unable tequation through theK+1 number of parameters

invade such a resider(See also Ref.40] for the intricacies  «a(l),8¢(l), k=1, ... K, the equilibrium conditions cannot

of the ESS concept in relation to evolutionary game theory.be satisfied generically fdc>K+ 1, as it was stated. This

bound is related to the principle of competitive exclusion, as

the number of locally achievable dimensionslddt I3 is K

+1 [15]. (One can change the environmental state figm
What happens if the evolutionary process converges to By changing either the strategy or the population size, repre-

singular point, which is convergent stable but not evolution-senting togetheK + 1 local directions.

ary stable?In other words, what if evolution converges to a |t is clear from the bound that at mast+ 1 branches can

minimum of the fitness function?t is not protected against appear from one single branching event.

mutations but cannot evolve away either. For one-

dimensional trait space it was shown that evolutionary IIl. MODEL

branching is a necessary outcome of this situafib®17].

Coexistence of two strategies, located on the opposite sides In line with the general framework presented in the pre-

of the singular point, is always possible in the vicinity of this ceding section, we introduce a specific model for the simu-

type of singularity. As soon as the coexistence is establishedtional study. Evolution of & =2 dimensional “strategy”

the selection forces acting on the two strategies on the oppgarameter, denoted generally by the vector variallesy,

site sides of the fitness minimum push them away from eacktc., is investigated. The strategy is inherited either faithfully

other. Apart from the singular point, the canonical equationor with a small probability of mutation.

E. Branching evolution

(3) governs the evolution of each branch agdifhe inter- The rate of reproductiob(x) of strategyx is specified as
action between the branches have to be taken into account T
via the feedback variable.) New singular points may be b(x)=1-Xx'Ax, ®

reached and further branchings may ocfclif].
No complete analytic theory of evolutionary branching is
known for more than one dimension. The main purpose of ((1_f)—1 0 )

where the matriXA is

the paper is to investigate this situation. 0 1t (9)

F. Local coexistence with the asymmetry parameter<(f<1. Accordingly, the
There is a bound on the branches appearing in a singleentral strategx=0 maximizes the reproduction rate. Strat-

branching evenitl5]. At mostK +1 number of strategies can egies withx"Ax>1 are not viable.

coexist in aK-dimensional strategy space in the vicinity of  Death is caused by competition with other individuals.

the singular strategy. Any individual of strategyx contributes to the death rate of
To see this, we expand the fitness function into Tayloran individual of strategyy by a(x,y). This “competition

series around. As the slope of the fitness is zerosgtone  function” is specified as

should consider the expansion up to second order to see the 5
nonvanishing terms: _ (X—y)
axxy)=exp ————/, (10)
K K 20
r(x,l)=a(|)+k21 'Bk(l)(xk_xk)JrkJE:l YD) (=) where o is the “competition width.” The death rate of an
individual of strategyx is determined by the total competi-

X (x,— %) + (higher-order terms (6) tion of individual experiences:
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L 10
|(X):,El na(xi) x). (11)
“

In this model, the functiori(x) plays the role of the envi-
ronmental interaction variable that is, diml =< and there
is no trivial bound on the number of coexisting strategies.

-

[ S N B T3

Suppose that the strateghe@, i=1,2,...L are present 1 K\
with population sizes®. If all the n)’s are large enough —
and there are no mutations, the population dynamics can b R SO

described by the Lotka-Voltera competition equations : :
0.1 : .- 0.1
(i) : \

dn . . . -
 —Th(xMy =1 (xM)1n® 0 F . oos |
gr [ = 1) . (12 f
r A
0.0 S A S = 00f- - ]

The growth rate

Xy

-0.05 g". -0.05
r(y,H)=b(y)—I(y) 13 ;
-0.1 . -0.1
is considered to be the “fitness” of the strategyin the ST e o0 o ol 01 2 3 456 78 90
background set by the strategig®) and population sizes %o t
n), j=12,... L. FIG. 1. Evolution with competition widthr=1.0. The system

The mutation process has to be implemented by hand. Wearts from (0.1,0.1) and evolves into the singular p@x). There
suppose that strategy”) mutates with rateub(x)n®. (It is no branching because> o . The carrying capacity is symmet-
corresponds to probabilityw of mutation in any birth ric: f=0; the mutational step-size is=0.005. In the bottom-left
event—u is often calledmutation rat¢ The new strategy part of the figure the strategy-space trajectory is shown, while in the
x(MY is chosen randomly with uniform distribution in the top-left and bottom-right parts the development of the strategy com-
two-dimensionale neighborhood of(). While the size of ponentsx, andx; are depicted, respectively. Time is counted by
the mutant clone is small compared to the “resident” densi-million time units.

tiesn®, i=1,2, ... L, the death rate of a mutant individual , o o

is dominated by the contributions from individuals of the The density of the arising mutant and the extinction thresh-
resident strategies. Then, the growth rate of the mutant cafld were equal and small enorﬁgh so that tﬁse arising mutant
be calculated from Eq(13). However, while the mutant does not disturb the resident! ):next:_lo - :I'?e reso-
population is small, the deterministic population dynamicslution of the strategy space was rather fine< 0" unit.

does not apply. According to the branching process theory,

long-term survival probability of the mutant clone, descend- IV. RESULTS

ing from a single individual, is A. The pattern of phase transitions to evolutionary branching

0 if r<0 Note first that if the strategy alone is present, then the

Vb i >0 (14 only singular strategy ix=0. The equilibrium densityas
determined by the condition=0) for this strategy when

[37] (p. 109, [41,42. The new mutant is considered to be alone, isn=1. Then, forf=0, the fitness function in this

established, and included into the list of the strategiegquilibrium is

present, with probability(14) calculated forr=r(x(M").

The newly established strategy begins its life from a low f(y,)=1—y2—ex _i

initial population sizen(™, Y. 202]"

Strategies decreasing below a given population sizg
are removed from the list of strategies. At y=0 it has a local maximum for>o., and a local

Accordingly, the simulation of the model consists of re- minimum for o< o, whereo,=1//2=0.707. This thresh-
peating 3 consecutive steps: old is independent of the number of dimensions.

(1) integrating the ODE of the population dynamics for a  Figures 1-4 demonstrate the behavior of the model with
period 7; (2) removal of the strategies with low population competition widthso=1.0, 0.7, 0.5, 0.2, respectively, in 2D
size; (3) possible addition of new muta(s. for the rotationally symmetricf(=0) case. In the bottom left

This combination of deterministic population dynamics part of each figure the trajectory in the strategy space is
with a stochastic mutation process was introduced by Metzhown, while in the top-left and bottom-right parts of the
et al. [15] and Geritzet al.[17] and, since then, applied for figures the time development of each component of the strat-
several model$43—48§. egies is shown(We will use the same representations in the

The mutation rate was chosen to pe=2x10"". The rest of the paperThe simulation was initiated with one spe-
update time wasr=100 time unit(TU), small enough to cies of strategy ok(®)(t=0)=(0.1,0.1), the mutational step-
keep the expected number of mutations duringelow 1.  size wase =0.005.

P

(15
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FIG. 2. Same as Fig. 1, but the competition widit=0.7, FIG. 4. Same as Fig. 1, but with very small competition width

slightly less thano.. There is already a branching, but it goes (¢=0.2). A series of consecutive branchings occurs.
rather slowly: it occurs at about 20 million TU.

retical predictions. After the first branching the evolution of
he emerging species are directional again until they arrive to
he vicinity of their respective singular points. These new

branching. This change of the behavior of the singular poin .ingularities are determined by th? condition th‘?‘t the evo_lu—
at o= o is analogous to a phase transition with the compe-'onary attraction towards the maximum of carrying capacity

" . should compensate for the repulsion between the species due
tition width o as control parameter. The rate of the branches . ) >

: to competition. The new singularities may or may not be new
expansion can be regarded as the order parameter of the

phase transition. Random establishment of the branching dltgranchlng points depending on the value of the control pa-

rection represents a spontaneous breaking of the rotationgﬁ‘metem' So, furt_her decrea;e of the_c_ontrol parameter re-
symmetry of the model Sults in consecutive branching transitions. For extremely
The global behavior is in good agreement with the theo—sma“U values, a w_hole series of branchings ocdses: Fig.

4). However, even in the case of small when the propen-

In all cases, evolution of a single species converges to
=0. Foro> o, this strategy is an ESS, so evolution cease
here. On the other handy<o. results in evolutionary

w sity for branching is very high, we have never found any
as : branching into more than three directions, in accordance with
o : the analytic prediction.
» § Nevertheless, a remarkable departure from the analytic
Hz‘; ; theory is also observable for small competition widtls
» : =0.2,0.5. The first branching may occleforereaching the
15 § singular strategx=0. This is because the analytic treatment
10 ; supposes the validity of the linear approximation for the fit-
5 e ness function on the scale of mutational step-sizeThis
%05040302-01 90 010203 04 05 assumption breaks down at the singular point, where the lin-
° ear term diminishes. For very small, the quadratic term
0.5 0.5 .. . . .
0a Do 04 arising from the competition functiofi0) is large enough to
03 3 03 dominate the fitness function earlier than the singular strat-
02 ( . 02 egy is approached.
0.1 K Lot A 01
ool Y ,;';‘;.,}_é',",',“,', \ -l oo
o \. ! o B. The branching pattern
0.2 1 . ', -0.2 )
03 ‘\ ! 03 The parameter value= 0.5 was chosen for more detailed
o4 ! o4 investigations of the branching pattern. In this case the first

504030201 90 0.1 02 03 04 05 s 10 15 zts 30 35 40 45 50 branching goes already rather easily but the number of con-
¢ secutive branchings is still limited. Consequently, the system

FIG. 3. Same as Fig. 1, but=0.5. The branching occurs more evolves deterministically for a sufficiently long time after
easily than in Fig. 2, at about 2.5 million TU. each branching event. In this section, we concentrate on the
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Xo Xo Xo Xo

FIG. 5. Examples for two-branchings with=0.5 in the sym- FIG. 7. Real three-branchings with the same parameters as in

metric situation {=0), with £=0.0025, which is a rather small Fig. 5.

value. The system starts from the center. . .
y In the upper-right part of Figs. 10 and 11 we have de-

picted the time evolution of the number of coexisting pheno-
first branching ak=0. Accordingly, the simulations are ini- types L and the density of the whole population
tiated by a single species with this strategy. =EJ-L:1n(J). As we see, the density of the whole population
Some examples are shown in Fig. 5 with branchings intancreases after every branching. The number of the coexist-
two directions. For the sake of illustration in Fig. 6 we showing phenotypes becomes rather stochastic, but tends to in-
examples where the branching at the center occurs into threzease near the branching points. It decreases again when the
directions, but during further evolution one of the branchessystem leaves a branching point. The reason for this behavior
dies out. These armot regarded as three-branchings whenis the flattenlng fitness function around the singularities. At
studying statistics. In Fig. 7 “real” three-branchings can bethese regions, théstochasti¢ process of mutations domi-
seen. In these figures the mutational step-size=i9.0025.  hates over selection caused by the slope of the fithess land-
Some other examples with mutational step-gize0.005 for ~ SCapPe. , ,
two-branchings are presented in Fig. 8, for three- branchlngs Finally, Fig. 12 withe =0.01 andf =0.2 demonstrates the
in Fig. 9. We conclude that both the two- and the three- onsequences of strong breaking of rotational symmetry. In
The possibility of consecutive branchlngs strongly de- branchings rather |mprobable For example, with the param-
pends on the outcome of the first branching, whether it hap; Gter set of these examples, we have found only 11 three-
pened into two or three directions. After a two- branCh'ngbranchmgs on 3000.
event in the center, both branches separate into two by a new
branching event on a circle of diameter 0.7. Then, the four
branches evolve into another branching point where all the . . .
four branches separate into two, again. The eight-branches In this section we measure the probability of three-
system evolves until it reaches a roughly symmetric configu- ranchlngs at several parameter combinations, but always
ration when all the eight branches are situated on a circle of’ ith 0=0.5. We are most interested to see whether this

C. Statistics of the branching types

diameter 0.875. This is the final steady stage of the evolu- o4 ‘ 04
tionary process(Fig. 10. In contrast, the three branches o3 ( 03
emerging from a three-branching event branch only once o £ 02 !
more. These branching points are situated on a circle of di- o 3 01 e
ameter 0.85. The six branches emerging here evolve onte oof--------- - f-ooooonone W00 / rrrrrrrrr
approximately the same circle as in the two-branching case . ‘ 01 ,,..-v"' !
and cease to evolve at the symmetric configuratiig. 11). 02 / 02
0.3 ' 0.3
04 ' 04 ' _O'{OA -03 -02 -01 04‘0 01 02 03 04 -0.{044 -03 -02 -01 0:0 01 02 03 04
Xo X0
04 - 04

0.3

0.2

1‘ 03

¢ .

H 02 :

} :
01 0.1 :
b OO } ------------- b 00
-0.1 ‘ 01

k3

i
04 . 04 . 02 i 02 :
04 -03 -02 01 0.0 0.1 02 03 04 04 03 -02 0.1 0.0 01 02 03 04 . .
0 Xo 03 } 03 :

FIG. 6. Examples with the same parameters as in Fig. 5, for the *0 43 02 1 Xg M0 EXETEES Xg o1 02 03 04
extinction of one of the three branches before long after the branch-
ing in the center. Development like thisnst considered as a three- FIG. 8. Examples for two-branchings with the same parameters
branching when investigating statistics. as in Fig. 5, but with larger mutational step-size 0.005.
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0.1 0.1
w00 = 00
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0 X0 0.5 0.5
-05-04-03-02-0.1 %0 0.1 0.2 0.3 04 05 0 5 10 15 20 25 30 35 40 45 50
FIG. 9. Examples for three branchings with the same parameters 0 t
as in Fig. 8. FIG. 11. Similar to Fig. 10, but the first branching occurred into

three directions. In this case the steady state consists of six branches
probability goes to zero, or remains finite, in the lingit ~ situated on the same circle in the strategy space.
—0.

At the end of each simulation, a clustering algorithm waspetween the phenotypes increased step by step slowly while
used to determine whether a two- or a three-branching hagoth phenotypes to be fused were in the same branch. How-
occurred. The two strategies nearest to each other were fuseger, it had a big jump when, finally, strategies from two
in each step of the algorithm. Doing so, the minimal distancejifferent branches were attempted to be fused. The algorithm

was terminated when the minimal distance reached the value

1 o 0.2. Then, the still different phenotypes were counted and the
100 14 number was regarded indicative of the number of branches.
i ot As we were interested in the number of branches reaching
L1}j
- 60 1.0 j
0.9
40 70 04
60 . <
50 3
20 0 0.2
0 30 Ry
-0.5-0.4-03-02-01 00 0.1 02 0.3 04 05 200 00
X0 10
0 02
05 - 05
04 04 1 04
03 03 [%
02 02 1
0.1 0.1
w00 b 00
-0.1 -0.1 04
-02 -02 i
-0.3 -0.3 0.2
04 -04 —
0.5 . 05 » 00
-0.5-04-03-02-0.10.0 01 02 03 04 0.5 0 20 40 60 30 100 120
XO t 0.2
FIG. 10. The same parameters as in Fig. 8, but the system ha ,,
been let evolve for a long time to reach a steady state. The stead

state consists of eight branches situated on a circle in the strateg 04 02 %g 02 04 04 02 ;;-g 02 04
space. The trajectory and time developments are also shown, and in

the upper-right part we have depicted the time development of the FIG. 12. Two- and three-branchings in a highly asymmetric situ-
number of coexisting phenotypésas well as the density of the ation with mutational step-sizes=0.01 and asymmetry parameter
whole populationn=EjL:1n(”. The time scale of these small fig- f=0.2. The final steady situations are shown with the branches
ures is the same as that of the bottom-right figure. situated on an ellipse.
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FIG. 13. Probability of three-branchings as a functiorzofThe
carrying capacity is rotationally symmetri€<€0). The single point
marked by star indicates the situation where the starting point wa;
x©©(t=0)=(0.1,0.1), instead of the singular one.

FIG. 14. Probability of three-branchings as a function of the
asymmetry factof at two different values of the mutational step-
Sizee. The probability vanishes with increasifigThe single point
marked by star indicates the situation where the starting point was

Lo . . xO(t=0)=(0.1,0.2), i f the singul :
the deterministic stage of diverging evolution, the clustermgX (t=0)=(0.1,0.1), instead of the singular one

had to be performed far enough from the branching points. ) . )
Accordingly, clustering was carried out when the separation | "€ three-branching probability as a function of the asym-
of the branches had reached the distance Q@8viously, ~Metry parametef is presented in Fig. 14 for two different

this distance should be larger than the critical minimal dis-mutational step-sizesg=0.01 and ¢=0.005. Increasing
tance 0.2 of the clustering algorithm. asymmetry makes the three-branchings less probable. This is

In Fig. 13 we have depicted the dependence of the prob(_easily understood if we consider that increasing the asymme-

ability of three-branchings as a function of the mutational™y Signifies out a specific direction for branching.

step-sizes for the rotationally symmetricf(=0) case. Each Both Figs. 13 and 14 contain one single data point marked

point in the figure represents 2000~5000 simulations td?Y & Star, ((r)()apresentmg a simulation in which the starting

achieve the precision indicated by the error bé&se Table ~PoInt wasx™(t=0)=(0.1,0.1), instead of the singular one.

| for the time needed to reach the separation 0.48. Starting the_ population out of th_e sm_gular point makes the
In Fig. 13 we see that the smaller the mutational Step_Sizgee—b_ranchmgs Iess_ probable since it also corresponds to a

is, the smaller the probability of three branchings we havePréaking of the rotational symmetry.

For a three-branching, it is necessary that the three mutants

take a rather symmetric position around the center to be able V. CONCLUSIONS

to live together. When the mutational step-size is large, the In line with the theoretical expectatiofigg], our simula-

mutants are more “mobile” in the strategy space: there iS;qng gemonstrated that a series of small and rare random
more possibility FO correcF the eventual defegts of t.hef startingy tation steps results in a deterministic process of continu-
position. Numerical studies become eslpeC|aIIy dlffICU!t forus evolution, governed by the slope of the fitness function,
very small values ot for two reasons. First, because simu-, v oaver this slope is nonzero. On the other hand, the be-

lation of evolution becomes slow and, second, because Vet ior remains of stochastic nature in the vicinity of singular

small pr_obabllltles are to be me_asm_;red n th|_s case. SF'”’ €Xstrategies, where the fitness gradient vanishes. Here, the se-
trapolation fore—0 seems to indicate vanishing ratio of |oction is weak, so the number of concurrent strategies re-
three-branchings. mains high even at low mutation rate. The region of essential
TABLE I. Time that the branches need to reach the separatioﬁ,andomness, can be shrunk arbitrarily by choosing th? .mF‘ta'
0.48 as a function of the step-size tional step-sizez small enough. However, the deterministic

evolution will drive the system into the stochastic region in

e (x10°) TU any case, provided that the singular point in question is con-
vergence stable. If evolutionary branching occurs at a non-

0.0015 40 ESS singular point, both the number and the directions of the
0.002 20 emerging evolutionary branches are essentially random as
0.0025 15 they are determined by the interface between the stochastic
0.003 9 and the deterministic phase. We observed branchings into
0.0035 7 two and three directions in 2D strategy space in line with the
0.004 5.5 theoretical bound on the number of emerging branches.
0.005 3.5 The results of our simulations point to vanishing three-
0.0075 2 branching probability in the limit—0. Care is needed to
0.01 1 compare this finding with the deterministic limit away from

the singularity, which is also related to—~0. Decreasing
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makes evolution slower, so it rescales time. This rescalindrom a separate event of branching. While the number of trait
goes ass ! in deterministic phase, when the fitness differ- dimensions is high in any real evolutionary process, our re-
ence is dominated by the linear term, and s in the  sults support the possibility that only one combination of
vicinity of the singularity under the dominance of the qua-them is relevant in any specific event.
dratic term. Consequently, time scales of the directional evo- The Lotka-Voltera competition model we analyzed is the
lution and of the branching separate in the limit-0. We =~ MOSt common model of coexistence of different species, as
lose branching on the fast scale and directional evolutiofvell as of different genotypes within the same species
becomes instantaneous on the slow oi@ze Ref[21] for ~ [36,50—-54 and one of the simplest examples for evolution-
the connection between this time-scaling issue and the cory branching. However, as far as relatively small mutation
cept of punctuated equilibriuf9].) Our simulations corre- Steps are considered, our results are independent of the spe-
sponded to an intermediate for which the directional evo- cific model we studied. This is clear from the fact that, for
lution was already deterministic enough, but the time-scalémalle, the process of mutant invasion is determined by the
Separation was not extreme and the three_way branching phg[St nonvanishing term of the Taylor expansion of the fitness
nomenon was still present. It is a question for further confunction. Directional evolution is determined by the slope,
sideration, what possible choice ofcorresponds the best to While the stochastic phase in the vicinity of the singularity is
the biological reality. Considering sexual populations, ingoverned by the second-order terms. This is exactly the idea
which recombination maintains a high level of genetic vari-behind the classification of the singular strategies according
ance even in the limit of small and rare mutations, may ever© their second-order behavior, which was suggested and
decouple these two consequences of small evolutionarinplemented in Ref.16] for 1D strategy space. Note that the
steps. mutation ratex was not low enough to strictly obey the
Breaking of rotational symmetry of the model also de-conditions of the analytic theory. The next mutant arrived
creases the probability of three-branchings. The relativavell before the previous one has equilibrated. However, ac-
scales of the two directions were fixed when the mutatiorfording to the simulation results, this does not affect the
covariance matrixC was chosen to be rotationally symmet- Pehavior too much. In line with Eigen’s concept of quasispe-
fric. Without the freedom of further rescaling, in reality we ¢ies[55-57, the directional part of the evolutionary process
have little reason to expect rotationally symmettienatrix ~ ¢an be described as a moving cloud of mutants.
corresponding td =0. Breaking the rotational symmetry of ~ The only essential assumption we rely on is the concept of
the competition functior(10) would have a similar conse- adaptive speciation driven by an ever-changing fithess land-

quence. This result, again, points to the probable predomicape. For a complete theory of speciation, one has to con-
nance of the two-way branchings. sider a sexual population and implement a mechanism for

Furthermore, we have found that the initial condition €mergence of reproductive isolation between the species
x©(t=0)#0 results in a smaller probability of three-way [3,5,7,10,12 Evolutionary studies often employ a fixed fit-
branching as well, than the initial conditiod®(t=0)=0 ~ Nness function. This approach is very useful in studying evo-
does. Naively, one could assume that the deterministic corfutionary optimality problems, as well as mutation-selection
vergence to the singular point diminishes the effect of the?@lance{58—61. However, no meaningful biological diver-
initial condition on the outcome of branching. According to Sity ¢an emerge in such model, as a consequence of adapta-
our data, this is certainly not the case. Once again, the intilO", because there is no generic reason for the different
mate relation between the deterministic and the stochasti€@ks of the adaptive landscape to have of equal height.
phase of the process provides the explanation. The conver- N contrast with adaptive speciation, the classical “allo-
gence ceases as soon as the system enters the stochasticP@lic” theory of speciatior62,63 supposes that separation
gion, so the stochastic phase is initiated by a rotationallyP€tween species emerges as a genetic “by prodi@f of
asymmetridistribution. These two types of initial conditions €volution of the different subpopulations at different loca-
represent different biological scenarios, both of them are relions. There is no explicit need for changing fitness land-
alistic. The initial strategyx(®)(t=0)#0 corresponds to a S€ape In thls picture. Implicitly, however, the assumption of
speciation process in an essentially constant environmenri€€dback is needed to understand why the new and the old

One species evolves to the branching singularity and splitS§Pecies can live together, without out-competing each other,
there. On the other hand, the initial conditiat?(t=0)=0 when they finally meet. New empirical evidence support that

is relevant when speciation is initiated by an environmentafPatial separation is not a prerequisite for specig66.
change. Suppose that a parameter change bifurcates a fornfep the other hand, the idea of adaptive speciation might be
ESS point into a branching one. If a species has evolve pplicable f(_)r speciation modes |nvolv!ng spatial segregation
earlier into this singularity, then it starts the process ofi8:9:44, so it has a chance of becoming the general under-
branching from an already established rotationally symmetying concept of speciation.
ric distribution after the bifurcation.

All 'ghes_e resylts tpgether su'ggest that the thr_ee_-way ACKNOWLEDGMENTS
branching igpossible still, the dominant mode of speciation i
is probably the two-way branching. This is certainly in line  We thank Ulf Dieckmann, ¥ Kisdi, Stefan Geritz, Hans
with the usual picture about the evolutionary process. HowMetz and Peter Jagers for discussions. This work was fi-
ever, no clear empirical way is available to decide whethenanced from the OTKA Grant No. T033097 and from the
each new species emerging during adaptive radiation comé$WO-OTKA Grant No. 048.011.039.
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